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Overview

Agenda:
Qualitative outcomes and classification problem.
LPM, logit and probit models.
Estimation, interpretation and accuracy measures.
Poisson Regression on count data

Readings:
ISLR sections 4.1, 4.2, 4.3
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Qualitative Outcomes

So far our outcome variable Y has always been assumed to be quantitative, e.g. price, quantity,
SAT score, etc.

Qualitative variables (race, gender, geographical region, type of education, etc.) have only been
discussed as predictors.

But what if we want to quantify a relationship where the outcome Y is a qualitative variable?

A person arrives at an emergency room with symptoms that could be attributed to one of three medical
conditions.
Online banking service assesses whether a transaction being performed is fraudulent based on user’s IP
address, past transaction history, transaction amount, etc.
A researchers performs an analysis of socio-economic factors that affect whether a student graduates
from college or drops out.
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Basic Classification Problem

Consider a qualitative variable Y that for every observation i takes a single value from a finite set
of possible unordered values C = {y1, y2, . . . , yC}.

Y = eye color, C = {brown, blue, green}
Y = medical diagnosis, C = {stroke, drug overdose, epileptic seizure}
Y = transaction status, C = {fraudulent, non-fraudulent}

Given a feature vector X and a qualitative response Y , the classification task is to build a function
C (X ) that takes as input the feature vector X and predicts its value for Y, i.e. C (X ) ∈ C.
In most cases we are interested in estimating the probabilities that Y belongs to a category in C
given X , i.e.

Pr(Y = yc |X ) ∀yc ∈ C
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Linear Probability Model: Problems

Suppose for our medical condition classification we code

Y =


1, if Stroke
2, if Drug Overdose
3, if Epileptic Seizure

Can we use our standard regression model to predict the medical condition of a patient in the
emergency room on the basis of her symptoms?

This coding implies an ordering of outcomes. It also implies that the difference between Drug
Overdose and Stroke is the same as the difference between Epileptic Seizure and Drug Overdose.
In most cases, it is not possible for us to create a natural ordering in quantitative data
A different coding

Y =


1, if Drug Overdose
2, if Stroke
3, if Epileptic Seizure

Will generate a different model and different predictions
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Example: Credit Card Defaults
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Linear Probability Model

Suppose for our credit card default classification we code

Y =

{
0, if No
1, if Yes

Can we use our standard regression model to estimate a regression of Y on X and classify outcome
as Yes if Ŷ > 0.5?

Given that Y is binary, we have
E(Y |X ) =?
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Linear Probability Model

Suppose for our credit card default classification we code

Y =

{
0, if No
1, if Yes

Can we use our standard regression model to estimate a regression of Y on X and classify outcome
as Yes if Ŷ > 0.5?
Given that Y is binary, we have

E(Y |X ) = 1 · Pr(Y = 1|X ) + 0 · Pr(Y = 0|X ) = Pr(Y = 1|X )

which means that in this case standard linear regression will estimate the probability of outcome
Y = 1, hence the name linear probability model or LPM.
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Linear Probability Model

LPM retains all properties of linear regression, but the interpretation of the results is slightly different:

Pr(Y = 1|X ) = β0 + β1X1 + β2X2 + . . .+ βpXp + ϵ

βj =
∂E[Pr(Y = 1|X )]

∂Xj
=

E[∆Pr(Y = 1|X )]

∆Xj

so regression coefficients now capture constant marginal probabilities of outcome Y = 1 given a
change in Xj .

LPM works very well in binary classification, especially if sample size is moderate to large.
But it also has some inherent disadvantages
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Linear Probability Model

The orange marks indicate the
response Y, either 0 or 1.

Blue line is estimated linear
regression, which produces negative
predictions for Pr(Y = 1|X ) when
Balance is less than 500.
One way is to simply ignore the
problem and bound any predictions
from above and from below.
But can we do better?
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Moving away from LPM

The problem with prediction in LPM stems from the fact that we use linear combination of features
X as the estimated probability itself.

To avoid this problem, we can instead use a one-to-one mapping F (·) from R to [0, 1] interval:

Pr(Y = 1|X ) = F (β0 + β1X1 + β2X2 + . . .+ βpXp)

What could serve as a function F (·)? Infinitely many possibilities exist, but because this question
was first addressed by statisticians, a natural choice was a cumulative distribution function (cdf)
from some distribution.
For any random variable Z its cdf FZ (·) is by definition:

FZ (a) = Pr(Z ≤ a)

In classical statistical learning the two most common choice for F (·) are standard normal and logistic
cdf.
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Probit and Logit Models

For simplicity, let’s use the matrix notation:

Xβ = β0 + β1X1 + β2X2 + . . .+ βpXp

In probit model F (·) is assumed to be the cdf of a standard normal distribution:

F (Xβ) = Φ(Xβ) =

∫ Xβ

−∞

1√
2π

exp−
z2
2 dz

In logit model F (·) is assumed to be the cdf of a logistic distribution:

F (Xβ) = Λ(Xβ) =

∫ Xβ

−∞

exp(−z)

(1 + exp(−z))2
dz =

expXβ

1 + expXβ
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Probit and Logit Models

With either normal or logistic cdf as our
F (·) function the estimated probability
will, by definition, always lie in [0, 1] in-
terval.
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Generalized Linear Models

Both logit and probit are special cases of the so-called generalized linear models (GLMs). Every GLM
consists of three parts: the structural component, the link function and the response distribution.

Structural component is simply the linear combination of our predictors: Xβ.
The link function g(µ) is such that its inverse gives us the (conditional) mean of our outcome Y as
a function of the structural component:

g(µ) = Xβ or E(Y |X ) = µ = g−1(Xβ)

The link function is the key to GLMs: since the distribution of the response variable Y is non-normal
(in our simple example it is binomial), it’s what lets us connect the structural component Xβ to the
response Y — it ’links’ them (hence the name).
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Generalized Linear Models

Because our outcome Y is binary, we have E(Y |X ) = Pr(Y = 1|X ), and thus our inverse link
function g−1 is simply the function that defines conditional probability of Y = 1 given X .
For probit and logit models the corresponding cumulative distribution functions act as inverse link
functions:

Probit : E(Y |X ) = µY |X = Pr(Y = 1|X ) = Φ(Xβ)

Logit : E(Y |X ) = µY |X = Pr(Y = 1|X ) = Λ(Xβ)

Note: standard MLR is also a special case of GLM with g(µ) = µ = Xβ.

The two key differences of probit/logit models and usual MLR are estimation method and marginal
effects calculation/interpretation.
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Maximum Likelihood Estimation: Idea

Suppose X1,X2, ...,Xn form a random sample from a distribution for which the pdf is f (x |θ)

For every observed vector x = (x1, x2, ...., xn), we can define the joint pdf as follows

L(θ) = fn(x |θ) = f (x1|θ).f (x2|θ).f (x3|θ)...f (xn|θ) (1)

L(θ) is called the Likelihood Function
The MLE estimator of θ will find the parameter values that maximize L(θ)

In other words, it will find the parameter value that maximize the likelihood of the observed data
being drawn from f (x |θ)
Suppose x1, x2, ..., xn form a random sample from a normal distribution for which the mean µ is
unknown and variance σ2 is known
The likelihood function of µ is

L(µ) = fn(x |µ) =
n∏

i=1

1
σ
√

2π
exp−

(xi−µ)2

2σ2 (2)
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Maximum Likelihood Estimation: Example 1

Example: Suppose I toss a coin 100 times and get 56 heads. What is the MLE of the probability of
heads in a single toss?

Model: L(p) = L(p; n, x) =
(
n
x

)
px(1 − p)n−x =

(100
56

)
p56(1 − p)44

L(0.5) = 0.038
L(0.52) = 0.058
L(0.54) = 0.073
L(0.56) = 0.081
L(0.58) = 0.073
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Maximum Likelihood Estimation: Method

Method 1
In the previous example, it is easy for us to write a simple equation that describes the likelihood
surface that can be differentiated to find the MLE estimate

Step 1: Take the log

ln L = ln

(
100
56

)
+ ln(p56(1 − p)44) (3)

ln L = 56 ln(p) + 44 ln(1 − p) (4)
(5)

Step 2: Differentiate the log likelihood to find the optimal parameter

56
p

− 44
(1 − p)

= 0 (6)

56(1 − p)− 44p = 0 (7)

p =
56
100

(8)
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Maximum Likelihood Estimation: Method

Method 2
In the previous example, we used the information that sum of bernoullis follows a binomial distribution
to construct the overall likelihood surface

In many cases this might not be possible because we are not working with such distributions and the
model is at the level of individual coin tosses
In such cases we need to construct the overall likelihood surface using the individual likelihoods
Each individual coin toss follows a Bernoulli distribution. Suppose X = 1 when heads and 0 otherwise

L(p; x) = px(1 − p)1−x
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Maximum Likelihood Estimation: Method

Method 2: Remember the data is given to us

Observation Outcome (x) Likelihood of outcome

1 1 p
2 0 1-p
3 1 p
...
99 0 1-p
100 1 p

Total 56 ?

What is the overall/joint likelihood of entries in the second column?

Each coin toss is independent

L(p) = p.p.p.p..(1 − p)(1 − p)...(1 − p) (9)

L(p) = p56(1 − p)44 (10)

ln L(p) = ln(p56(1 − p)44) (11)
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OLS as a special case of MLE

Main assumption: The errors follow a normal distribution with mean 0 and variance σ2

ϵ ∼ N (0, σ2)

Yi = β0 + β1Xi + ϵi

ϵi = Yi − β0 − β1Xi

The likelihood function of (β) is

L(β) =
n∏

i=1

1
σ
√

2π
exp−

(yi−β0−β1xi )
2

2σ2

ln(L(β)) =
n∑

i=1

ln(
1

σ
√

2π
)−

n∑
i=1

(yi − β0 − β1xi )
2

2σ2

The first term does not depend on (β) and the second term has a constant σ2 that we can bring
outside the summation

ln(L(β)) = − 1
2σ2

n∑
i=1

(yi − β0 − β1xi )
2
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Maximum Likelihood Estimation

Because we no longer have a direct connection between Y and our structural component Xβ, we
need to specify our loss function in a different way. Using our link function, we can for every
observation i wright down the probability of observing a certain value of Yi given values of Xi

For example, for a logit model we have:

Pr(Y = Yi |Xi ) =

(
expXiβ

1 + expXiβ

)Yi (
1 − expXiβ

1 + expXiβ

)1−Yi

With the default assumption of i.i.d. observations we can wright down the joint probability or
likelihood function of seeing our sample:

ℓ(β) =
n∏

i=1

Pr(Y = Yi |Xi )
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Maximum Likelihood Estimation

Maximum likelihood estimation (ML) is a method that chooses parameters β so as to minimize the
loss function in form of the negative of the log likelihood function:

β̂ML = argmin
β

− ln ℓ(β)

Under some general conditions β̂ML is efficient, consistent and asymptotically normal, just like β̂OLS

But unlike OLS, ML is a more general estimation procedure and allows one to recover structural
parameters such as β in models that are far more flexible than standard MLR.
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Logistic Regression

A key difference of logit/probit models from LPM is the fact that margial effects are now calculated
and interpreted in a different way:

Pr(Y = 1|X ) = p(X ) =
expXβ

1 + expXβ

p(X )

1 − p(X )
= expXβ

ln
p(X )

1 − p(X )
= Xβ

The quantity on the left is called log-odds or logit
The logistic regression model has a logit that is linear in X

In a logistic regression model, increasing X by one unit changes the log odds by its corresponding β
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Marginal Effects in Probit/Logit

The other key difference of logit/probit models from LPM is the fact that margial effects are now
calculated and interpreted in a different way:

Probit :
∂p(X )

∂Xj
=

∂Φ(Xβ)

∂Xj
βj ̸= βj Logit :

∂p(X )

∂Xj
=

∂Λ(Xβ)

∂Xj
βj ̸= βj

where p(X ) = Pr(Y = 1|X ) for simplicity

The marginal effects now depend on values of all variables in X , so we need to either estimate the
marginal effects at a specific value of all our predictors (typically means or medians) or calculate
their average over all values of X in our sample.
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Multinomial Logistic Regression

It is possible to extend the two-class logistic regression approach to the setting of K > 2 classes
Suppose we have K classes. First we need to define a base class (K th one)

Pr(Y = k |X ) =
expXβk

1 +
∑K−1

l=1 expXβl

Pr(Y = K |X ) =
1

1 +
∑K−1

l=1 expXβl

It can be shown that the above model implies

Pr(Y = k |X )

Pr(Y = K |X )
= expXβk

ln
Pr(Y = k |X )

Pr(Y = K |X )
= Xβk

The interpretation of the βk is with respect to the base category K
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Goodness-of-fit Measures

While LPM can use the standard R2 as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.
In standard MLR an single R2 value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.

Consider the case where Y = 1 means a positive test result. Then our model’s predictions fall into
one of the 4 possible cases:

Y = 0 Y = 1
Ŷ = 0

True Negative False Negative (Type II Error)

Ŷ = 1

False Positive (Type I Error) True Positive

For a COVID-19 test or cancer screening, we care more FN then about FP.
For city administration FPs in traffic cameras and speeding tickets are more important.
In judicial system both FP and FN are equally important.
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Ŷ = 1

False Positive (Type I Error) True Positive

For a COVID-19 test or cancer screening, we care more FN then about FP.
For city administration FPs in traffic cameras and speeding tickets are more important.
In judicial system both FP and FN are equally important.

ML in Economics | Cappello | Fall 2024 Module 2: Classification 27 / 31



Goodness-of-fit Measures

While LPM can use the standard R2 as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.
In standard MLR an single R2 value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.
Consider the case where Y = 1 means a positive test result. Then our model’s predictions fall into
one of the 4 possible cases:

Y = 0 Y = 1
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Ŷ = 1 False Positive (Type I Error) True Positive

For a COVID-19 test or cancer screening, we care more FN then about FP.
For city administration FPs in traffic cameras and speeding tickets are more important.
In judicial system both FP and FN are equally important.

ML in Economics | Cappello | Fall 2024 Module 2: Classification 27 / 31



Goodness-of-fit Measures

While LPM can use the standard R2 as a well-defined goodness-of-fit measure, it is not an option
for logit/probit models due to the different loss function.
In standard MLR an single R2 value of 0.95 is an evidence of an excellent fit, but in classification
problems we are often more interested in class-specific performance, especially in areas such as
medicine or biology.
Consider the case where Y = 1 means a positive test result. Then our model’s predictions fall into
one of the 4 possible cases:

Y = 0 Y = 1
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Goodness-of-fit Measures

Consider the following confusion matrix , depicting the prediction results for the Default dataset,
using 50% as a threshold for probability of default:

True default status
No Yes Total

Predicted default status
No 9644 252 9896
Yes 23 81 104

Total 9667 333 10000

If we simply look at pure prediction precision, then:
Our total error rate is (23 + 252)/10000 = 2.75%, which seems low enough.
Out of 104 predicted defaults 81 ended up being classified correctly, which means only 23/9667 = 0.24%
of all non-defaults were classified incorrectly.
However, out of 333 true defaults we managed to miss 252/333 = 75.67%, which could be an unac-
ceptably high error rate for this class.
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of all non-defaults were classified incorrectly.

However, out of 333 true defaults we managed to miss 252/333 = 75.67%, which could be an unac-
ceptably high error rate for this class.
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Goodness-of-fit Measures

This why in classification problems it is important to evaluate class-specific precision via the following
four measures:

Y = 0 Y = 1

Ŷ = 0
True Negative Rate (TNR) or specificity :

TNR = TN/N = 9644/9667 = 99.76%

False Negative Rate (FNR):

FNR = FN/P = 252/333 = 75.67%

Ŷ = 1

False Positive Rate (FPR):

FPR = FP/N = 23/9667 = 0.24%

True Positive Rate (TPR) or sensitivity :

TPR = TP/P = 81/333 = 24.33%

As one can easily see, all four measures are related to each other. In particular, the following two
identities must always hold:

TNR + FPR = 100% and TPR + FNR = 100%
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Goodness-of-fit Measures

The table on the previous slide was constructed using the rule Ŷ = 1 if P̂r(Y = 1|X ) > 0.5, because 0.5
is the most common probability threshold used for classification predictions. However, the values of all 4
goodness-of-fit metrics will change if we change this threshold.

Black line: total error rate

Blue dashes: FNR

Orange dots: FPR

Based on this chart, we might want
to set our threshold to 0.05 to
achieve better error rate composi-
tion.
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Logit vs Probit

While logit and probit models usually deliver very similar estimation results (especially on large datasets),
modern statistical learning overwhelmingly prefers to use logistic regression. Why?

Coefficient interpretation. In Economics we are interested in calculating and interpreting marginal
effects, but in logit model one can also interpret the actual values of β̂j themselves. This is because
in logit model coefficient β̂j shows how the log of odds ratio changes with changes in Xj :

ln

(
p(X )

1 − p(X )

)
= Xβ ⇒ βj =

∂ln
(

p(X )
1−p(X )

)
∂Xj

Random utility models. Suppose consumer is choosing between two alternatives based on utility
that is a function of observable product attributes X and a random utility shock ϵ. Then if ϵ follows
Type I EV distribution, consumer’s choice probabilities will take logit form (McFadden, D. (1973)).
Generalized choice models and information theory (Matejka, F. and McKay, A. (2015).
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